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INTRODUCTION

One of the serious problems in satellite infrared imagery analyses and in
the retrieval of temperature profi l es in the presence of clouds from sat-
ellite soundings is how to di fferen tiate between the der i ved temperature
values which arise from the radiati on field involving the blackbody or non-
blackbody cloud. This problem has been recognized by Glahn [1] as one of
several difficult problems in conjunction wi th the determination of cloud
top heights and areal coverage. Chahine [2,3,4], among others , in a ser ies
of outstanding papers has descr ibed methods for retriev ing atmos pher i c
temperatures in the presence of clouds. However, these methods assume
that the clouds are blackbodies . Although a number of papers [5,6,7,8]
have examined the approximate thickness required for a cloud to radiate
as a bl ackbody, the cloud blackness problem has not yet comprehensively
been investigated . If the cloud thickness is the required parameter to
determine whether a cloud temperature arises from a blackbody radiati on
field , then it seems that the problem is far from being satisfactorily
resolved.

The purpose of this paper is to discuss the problem of the cloud blackness
in the ll~m infrared window region in relation to satellite application.
In examining the internal structure of the cloud radiation field , a method
was developed by wh i ch the degree of the c l oud blac kness may be derived by
adding a lO.5pm channel to, for example , the existing l2.Oj.im channel in
the vertical temperature profile radiometer (VTPR). Consequently, it
would be possible to determi ne the reliability of the derived temperature
values . To develop the method , it is necessary to first understand phys-
ically the internal cloud radiation field. Since the primary interest was
in satellite application , only the vertical upward—going radiation of
clouds was investi gated.

The computer program for solving the radiative transfer equation was based
upon the Gauss-Seidel iteration technique [9,10] and had been checked out
against published values in the literature [5,8]. For water vapor attenu-
ati on, use was made of LOWTRAN 3 [11 ] and the empiri ca l formul a gi ven by
Roberts et al., [12] to account for selective and continuum absorption ,
respecti vely. The computer program not only gives the cloud radiance val ues
as a function of zenith angles at different prescr ibed geometri c leve l s ,
but also calcula tes the opti cal properties , including the optical thick-
nesses and single—scattering albedos at corresponding levels.

Since an understanding of the internal structure of the cloud radiati on
field is essential to the development of the technique , the nex t sec tion
describes the cloud models to be used in the investigation. The theoret-
ical basis then follows . In section 4, computational resul ts are presented,
and the internal radiation structures are examined . These analyses lead
to the development of the technique for determining the degree of c loud
“b lackness ” or emissivi ty in section 5. A few numerical examples will be
given here. The final section contains the findings and conclusions.
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CLOUD MODEL

Only recently have the radiati ve properties of clouds been studied realis-
tically wi th inhomogeneous droplet and temperature distributions considered .
Stephens [13], using the meteorological , microphysical , and radiation data
furnished to him by Paltri dge [14], investigated the inhomogeneous strati-
form clouds theoretically and found the calculated downward radiances in
good agreement wi th the observed values. Platt’s observations [15] of up-
well ing radi ances emergi ng at different leve l s from hi s inhomogeneous
Stratocumulus Deck 2 as shown in Fig. 1 were adopted in this paper. This
cloud had a thickness of abo A t 550 m wi th a temperature distribution as
given in his figure. From the typical humidity profile shown , it may be
inferred that except for the mi ddle region of the cloud , which was satu-
rated, both the top and base layers were most likely subsaturated.

Platt’s radiance profile in the 1O.5pm window was simulated and radiance
values were expressed in n W m~-2 sr ’~ cm , which can be readily converted
to his physical unit by means of a simple formula. However , it should be
noted that the choice of cloud microphysics and wavelength would in no way
affect either the analysis of the internal radiation structure or the find-
ings and conclusions.

Although no microphysics data were provided by Platt [15], on the basis
of a number of cloud physics studies [16,17 ,18], it appears that the
gamma distribution [19] wi th two parameters , a = 4 and ~ = 1 , may ade-
quately represent the stratocumulus cloud over the ocean. The droplet
sizes ranged from 0..5pm to 25pm wi th a mean radius of 5pm. In view of the
abundant supply of sea-salt nuclei over the ocean , the upper limi t of the
range seems to represent a reasonable va l ue. With the known distribution
function and size range and the refractive indices for water spheres [21],
Mie scattering and absorption coefficients per unit length may be calcu-
lated.

Stratocumulus Deck 2 was divided into 22 layers each 25 m thick , and radi-
ance values were computed at each level. With the Mie coefficients known ,
a first approximation to the number density of droplets required to emi t
the desi red amount of radiation at each level was made. Then the tempera-
ture profile and the estimated droplet number densities at chosen l evels
were fed into the computer program to generate a first estimate of upward
radiances as a function ~f cloud depths. Adjustments were made of the
number densities at several levels ‘~n each run. Platt’ s radiance profile
was reproduced almost exactly for che lO.5pm window in four trial runs.
The input meteorological and microphysical values are given in Table 1.
Although the computer program is capable of accounting for water vapor
attenuation both inside and outsi de the cloud , the attenuation of surface
radiati on below the cloud base was not cons idered s i nce the amount of
attenuation was quite small , as is evident in Fig. 1.
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TABLE 1. INPUT METEOROLOGICAL AND MICROPHYSICAL DATA OF THE MODEL CLOUD

Height Pressure A irtemp Dewtemp Drop let
(km) (mb) (°K) (°K) (cm -s)

2.25 777.21 280.55 279.15 5.0
2.10 791.40 281.05 280.65 10.0
2.00 801,00 281,65 281.65 15.0
1.90 810.48 282.24 282.25 25.0
1.85 815.26 282.45 282.45 50.0
1 .80 820.07 282.45 282.35 100.0
1.75 824.91 282.35 282.25 130.0
1.70 829.78 281.95 281.75 120.0

Since most of the droplets concentrate in the lower 150 m layer, rapid
attenuation of the surface radiation is found in approximately the first
200 m above the cloud base (Fig. 1). The total number of droplets in the
550 m col umn per unit cross-sectional area is 2.20 x 106. These droplets
were redistributed uniformly throughout the entire column , resulting in
40 droplets cm— 3 or 3.52 x lO_2 g rn—3 in liquid water content at each
level . By taking the average temperature in the vertical column , a
homogeneous and isothermal cloud similar to those used by Yamamoto et al.
[5] and Hunt [8] was created from the original cloud model.

THEORETICAL BACKGROUND

The equation governing the transfer of thermal radiation through a scat-
tering and absorpti ve medium is

~~ ( T )  +1dI(-r ;p) 
= I(T;p) — 2 1 P

O (p,p I) I ( t ,p u )dp l

J-1

— [1 — 
~~
(T)]B[T

c
(T)] , ( 1)

where I is the spectra l intensity or radiance , p the cosine of the zenith
angle , r the optical thickness , 

~~ 
the single-scattering albedo, pO (p,p I)

the integrated phase function over azimuth angle , and B[T
~
(T)] the Planck

func tion for cloud temperature Tc at level r. For simplicity , the
wavenumber-dependent subscript has been eliminated . The above equation can
be separated into two components as follows : one component denotes the
external field , primarily due to surface radiation , and the other denotes
the cloud emission.
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Far the external field (Ig)~

_ _ _ _ _ _  = 1
9
(t;p) - 

w
O~~

T) 

1:1 PO (p~~P 1)1
g
(T~ P 1 )~~~

1 (2)

with boundary conditions

I (0;-p) 0g (3)

Ig (T b;+I J )  = B(T5)

where 0 and Tb denote the cloud top and base , respectively, and is the

surface temperature.

For the cloud emiss ion

I t ~ +1dl ~r ;pj W !~T )  i
~ 

C
d T 

= I
~

(T ;
~

) — 2 )_i 
p (1J 41I)I

c
(T;P

I )dp I

— [1 — ~~(T)]B[Tc(T)] , (4)

with boundary conditions

I ( 0 ; — p ) = O  ;
C (5)

IC(Tb;
+P) = 0 )

To simplify the expressions , let

~~~~ ( T )  +1
S~(t ;p) = 2 11 P°(P~l”)Ig(T;P ’)dIJ ’ (6)
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and

w (~) ,.+l 
~S~ (T;p) 

= °2 I ‘ (p,p ’)I~ (T;P’)dv ’ . (7)
J~. 1

Equations (6) and (7) represent the contributions by droplet scatterings.
Thus , equations for upward radiation are

dl ( t ; +p)

~ d ~
- 

= 1
9
(t;+p) — S~(T ;+p) , (8)

and

dl (t;+~i)

~ 
C
d -r 

= — S~(t;+p) — [1 — ~~
(T)]B[ T c (T )]

~ 
(9)

corresponding to (2) and (4), respectively. Similar expressions can be
written for downward radiation by changing +p to —p .

For a finite optical thickness, the expressions are readily sol ved [20].
The computer program solves (8) and (9) in essenUally the same manner by
means of the Guass-Seidel iteration technique for upweliing (as well as
down-welling) radiation at successive levels from the cloud base to the
top in accordance wi th boundary conditions (3) and (5).

The approximate solutions of (8) and (9) with the boundary conditions
specifi ed for the upwel ling radiances, 1g and ~~ at eac h success ive
level from the cloud base may be wri tten in the form

Ig :B gT + S g . (10)

(1 — 2
~

)B
~
(l — T) + S

~ 
( 11)

where Bg represents B(T 5 ); B
~ 

B[T
~
(T)]; Sg S~(l - 1); Sc S~(1 — T);

and I is the vertical transmittance from the cloud base to that level .
Values of I~ and I~ for the cloud model were obtained for lO,5prn, ll.Opm ,
ll.5pm , l2.Opm , and 12.5pm. The refractive indices for these wavelengths
were taken from Irvine and Pollack [21], The volume scattering , absorption,
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and extinction coefficients (per km) for 100 droplets and the average
single—scattering albedo for the model cloud are given in Table 2.

Upwelling radiances 1g and I~ together contribute to the total upwelling
radiati on from the model cloud ,4whereas 1~ represents radiance from an

isolated cloud only, i.e., no surface emission contribution [61.

TABLE 2. VOLUME SCATTERING 
~ sca t~’ 

ABSORPTION 
~ abs~’ 

AND
EXTINCTION 

~ ext~ 
COEFFICIENTS AND AVERAGE SINGLE

SCATTERING ALBEDO (
~

) OF THE MODEL CLOUD AS A
FUNCTION OF WAVELENGTH (A)

~sca t ~abs ~ext(pm) (knr1) (km-1) (krn ’) 
-

~~ 

_____________

10.5 792609 6,1013 13.3622 0,5044
11,0 4.8780 7.2201 12,0981 0.3665
11.5 4.6519 8.5988 13.2507 0,3174
12.0 5,2469 9.7333 14.9802 0.3152
12.5 5.8936 10.3532 16,2468 0,2796

INTERNAL RADIATION STRUCTURE AND DISCUSSIONS

Examination of (10) and (11) reveals that as I becomes closer to unity
(or T approaches 0) near the base of a thick cloud the total upward
radi ance, 1g + IC’ origi nates mainly from surface radi ation and little
from cloud emission. On the other hand, near the cloud top where T ap-
proaches 0 (or T approaches infinity), the cloud emission and scattering
dominate.

Thus,

~ 0, then ‘C B[Tc(0)] =

and

(1 — 

~0
)B
~ 
+ Sc , ( 12)
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This means that the apparent blackbody radiation at the top of a “black”
cloud Is composed of two radiant components, which include partly thermal
emission and partly scattering. The fractional amount of each is deter-
mined by the average single scattering albedo of the cloud.

Since the values of all the terms at each level in (10) and (11), excep t
those of S

9 
and Sc which also include some contributions from downward

radiation, can be readi ly ca l culated , it is simple to sort out the contri-
butions to the vertical upward radiation made by cloud emission , surface
radiati on, and droplet scatteri ngs and to exami ne their changes wi th wave-
length and cloud depth. For simplicity of presentation , the internal
cloud radiation field was examined at 100 m intervals up to 500 m as well
as the cloud top at 550 rn, Also , the cloud model was exam ined in four
different Cases involving (1) inhomogeneous droplet and temperature dis-
tribut ions , (2) homogeneous in both droplet and temperature distributions ,
(3) isothermal but inhomogeneous in droplet distributi on, and (4) homoge-
neous in droplet distribution but with nonisotherma l temperature distri-
bution. The first case was run for all the wavelengths listed in the pre-
ceding section, and the other three at l0,5pm and l2,5pm only. In this
manner , some physical insight may be derived as to the suitability of
employing a homogeneous cloud as opposed to an inhomogeneous one for mod-
el ing purposes.

Three tables are presented. The first two deal wi th percentage contribu-
tions i n the four cases , in which SS denotes the total scattering contri-
butions , i,e ,,S9 

+ ~~ CE the cloud emission, and IS the reduced surface
radiation . To evaluate what role the inclusion of water vapor would play
in cloud modeling, the calculated radiance va l ues at each level are given
in Table 5, so that the percentage contribution made by water vapor to
upward radiation may be understood.

In Tabl e 3, the changes wi th wavelength of percentage values , when compared
wi th those of optical values in Table 2 , show that (1) the surface contri-
butions (IS) at eac h level vary inversely w ith the exti nction coeffic ients
~ ext~’ 

(2) the total scattering contributions (SS) fluctuate about the
avera ge single sca tter ing albe dos (

~
) of the c loud, and (3) the emission

contributi ons (CE) increase wi th the wavelength. An examination of Tables
3 and 4 shows that, at all wavelen gths , as the surface contributions
decrease w i th thickness , the emission contributi ons increase. The scat-
tering contributions due to surface radiation and those due to cloud emis-
sion also behave in similar manners , al though they are not tabulated here.
However, the percentage va lues of the total sca ttering contr ibutions in
the four cases at corresponding wavelengths are vastly different, except
for case 3, This can be explained by the fact that cloud microphysical
properties play significant roles in the determination of the internal
radia tion structures.

10
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TABLE 3. PERCENTAGE CONTRIBUTIONS BY TOTAL SCATTERING (SS),
CLOUD EMISSION (CE), AND REDUCED SURFACE RADIATION
(IS) TO UPWELLING RADIATION AT DIFFERENT LEVELS (m)
AS A FUNCTION OF WAVELENGTH IN CASE 1.

Wavelength(pm)
Level (m) 10.5 11.0 11.5 12.0 12.5

100 SS 44 32 29 32 31
CE 34 43 49 52 54
IS 22 25 22 18 15

200 SS 50 36 32 32 32
CE 40 51 57 60 62
iS 10 13 11 8 6

300 SS 50 36 32 32 31
CE 42 54 60 62 65
IS 8 10 8 6 4

400 SS 50 36 32 32 30
CE 43 55 61 63 67
iS 7 9 7 5 3

500 SS 50 36 31 31 28
CE 44 56 63 65 70
IS 6 8 6 4 2

550 SS 49 36 31 31 28
CE 45 58 64 65 70
15 6 6 5 4 2
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TABLE 4. PERCENTAGE CONTRIBUTIONS BY TOTAL SCATTERING , CLOUD
EMISSION , AND REDUCED SURFACE RADIATION TO UPWELLING
RADIATION AT DIFFERENT LEVELS AT 1 O.5pm AND l 2.5pm
IN CASE 2 (HOMO DI), CASE 3 (HOMO T ONLY), AND CASE
4 (HOMO D ONLY).

Case 2 Case 3 Case 4
Homo DT(pm) Homo T Only(pm ) Homo 0 Only(pm )

Level (m) 10.50 12.50 10.50 12.50 10.50 12.50

100 SS 23 17 44 31 23 17
CE 17 32 34 54 17 32
TS 60 51 22 15 60 51

200 SS 36 25 50 32 36 25
CE 28 49 39 62 28 49
TS 36 26 11 6 36 26

300 SS 34 29 51 31 34 29
CE 29 58 41 65 30 59
TS 37 13 8 4 36 12

400 SS 48 31 50 30 48 31
CE 39 63 43 67 39 63
15 13 6 7 3 13 6

500 SS 51 31 50 28 50 31
CE 42 66 44 70 42 66
IS 7 3 6 2 8 3

550 SS 51 32 49 28 51 31
CE 43 66 45 70 43 67
TS 6 2 6 2 6 2

12 

-.—.---.-,.-..- -~~ - -. -
~~~-- -~~~~..-.-

.-——  . .  . . -



— 
—..-—-.-.

~
-, 

~~~~~~~~~~~~~~~~~~~~~ 
.
~ 

—‘-
I’

TABLE 5. PERCENTAGE EFFECT OF WATER VAPOR ON UPWELLING RADIATION
AT DIFFERENT LEVELS AS A FUNCTION OF WAVELENGTH.

Level 10.50 11.00 11.50 12.00 12.50
(m) Vapor A(iim) A(pm ) A (~im) A (pm) A (pm)

100 Yes 89.34 95.60 100.9 105.8 110.2
No 89.49 95.77 101.1 106.0 110.7

Percentage —0.2 —0.2 —0.2 —0.2 -0.4

200 Yes 86.48 92.76 98.14 103.1 107.6
No 86.67 92.96 98.33 103.3 108.0

Percentage —0.2 —0. 2 —0. 2 —0.2 —0.4

300 Yes 85.52 91.84 97.27 102.3 106.8
No 85.78 92.11 97.51 102.5 107.2

Percentage -0.3 -0.3 —0. 2 -0.2 -0.4

400 Yes 84.88 91.21 96.66 101.7 106.1
No 85.20 91.55 96.95 102.0 106.7

Percentage -0.4 -0.4 -0.3 -0.3 -0.6

500 Yes 84.41 90.75 96.20 101.2 105.5
No 84.79 91.15 96.56 101 .6 106.3

Percentage -0.4 -0.4 -0.4 -0.4 —0.8

550 Yes 84.23 90.58 96.03 101.1 105.3
No 84.64 91.01 96.42 101.4 106.1

Percentage -0.5 -0.5 -0.4 -0.4 -0.8

13



r ‘ -~~r~~~~~~~~~~~~ <~- w....-. ..r-r ~~~”- - r r W .~~~~~~~~ ‘~~

Percentage contributions are almost identical at corresponding levels at
both the lO.5pm and l2.5pm wavelengths in cases 1 and 3 which share the
same inhomogeneous droplet distributi on. The percentage values are nearly
identical in cases 2 and 4 which share the same homogeneous droplet distri-
bution . Apparently, this indicates that the upward radiation emerging from
any level inside as well as at the top of a cloud is virtuall y independent
of its internal temperature structure; moreover, this implies that the so—
called cloud-~top temperature may be regarded as the mean temperature of thecloud.

When the cloud is viewed as a whole , i.e., 550 m in thickness, the amounts
in all four cases of upward radiation emerging from the top are nearly the
same at their corresponding wavelengths. The calculated radiance values
are 84.23, 83.85, 83.95, and 83.67 mW nr2 sr 1 cm at lO,5pm for the four
cases , respectively. At 12.5jim , they are 105.30, 105.50, 105.70, and
104,85, respectively. Thus considering the cloud as a whole , littl e dif-
ference exists at a given wavelength in upward radiation emerging from
its top between a homogeneous model and an inhomogeneous one so long as
they have the same total droplet number or the same total liquid water
amount and the same mean temperature in the cloud column.

In the present study, since surface emission (is) still contributes to the
upward radiance at the cloud top, the cloud is not “black ,” It is even

ii less black at lO,,5pm than at l2.5pm, The calculated average cloud verti-
cal emissivity over the lO.5pm to 12,5pm interval is 0.85 compared with
Platt’ s value [15] of about 0,90 in the 10pm to 12pm band . Furthermore,
it may be observed in Table 3 that at the 550 m level the scattering
contributions (SS) at all wavelengths nearly equal the average single
scattering albedos of the cloud in Table 2 at the corresponding wave-
lengths. If the cloud were to grow another 200 to 300 m thicker, it
could be expected, as indicated in (12), that at 10.Spm , for example ,
the upward emission and scatteri ng contributions would split about 50—50.
And this -is when cloud emissivity would reach about unity.

Table 5 shows the effect of water vapor on upward radiation at different
levels as a funct i on of wavelength , Although there was appreciable water
vapor inside the cloud with about 98% relative humidity on the average
as given in Table 1 , the presence of water vapor appears to have negative
but negligible effects on the upward radi ance,

RATIO TEST OF CLOUD BLACKNESS

Not until a cloud behaves like a blackbOdy radiator can the study of its
internal radiation field ignore the radiation contribution from the under-
lying surface. The surface temperature is , in general , appreciably higher
than the cloud temperature, while the cloud—top temperature is lower than
the base temperature, Only when the cloud becomes “black” will the up—
well ing radiation directly relate to the cloud—top temperature. For a
nonbiack cloud , the cloud radiation field is contaminated by the surface
radiation; one might say that the radiation field is distorted. To illus —
trate such distortion, Tabl e 6 shows the equivalent blackbody temperatures
of the radiation field at different levels as a function of wavelength.

14
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TABLE 6. EQUIVALENT BLACKBODY TEMPERATURES (°c) CORRESPONDING TO
UPWELLING RADIANCES AS A FUNCTION OF WAVELENGTH AT DIFFERENT
LEVELS FROM THE CLOUD BASE WITH MEAN TEMPERATURES (T °C).

Level 10.50 11.00 11.50 12.00 12.50
(m) (°C) (pm ) (pm) (pm) (pm) (pm )

100 9.13 15.03 14 .34 13.50 12.88 12.37
200 9.19 13.08 12.47 11.72 11.15 10.72
300 9.06 12.42 11.85 11.15 10.63 10.20
400 8.84 11.98 11.43 10.75 10.24 9.75
500 8.62 11.65 11.12 10.44 9.92 9.37
550 8.52 11.53 11.00 10.33 9.85 9.24

Even though the mean temperature at a given level is at a constant temper—
attire , the equivalent blackbody temperatures decrease with wavelength.
Normally, blackbody radiance values increase monotonically with wavelength
at a given temperature. In the present situation , the radiance values at
a gi ven level in Tabl e 5 also increase ; however, the amount of increase is
relatively small , The percentage increases in blackbody radiance at , for
instance , 9°C are about 9%, 17%, 24%, and 30%, and at 14°C about 8%, 16%,
22%, and 28%, respectively, for ll.Opm , ll,5pm, 12.Oprn, and 12.5pm, wi th
reference to the blackbody value for 1O,5pm , By comparison , the percentage
increases in Table 5 at , for instance, the lOO—m level are about 7%, 13%,
18%, and 23%. respectively, At the 550—rn level , they are about 8%, 14%,
2O~, and 25%, respectively. It is this distort ion of the temperature —
wavelength relationship, or rather of the radiance-wavelength relationship
inside the cloud , that forms the basis upon which the proposed method for
determinin g the quality of cloud blackness or, to some extent, cloud
emissivity is developed ,

Tables 3 and 6 show an apparent excess in the amount of vertical upward
radiation , more at 1O.,5pm than at any other wavelengths, giving rise to
highe r equivalent blackbody temperatures in Table 6 at all levels. On the
other hand , Table 3 appears to indicate that the surface (IS) and hence
the resulting scattering contributicn~s (SS) together are somewhat greaterat lO.5pm,

The former is governed by the extinction coefficient of the cloud and the
latter by its single scattering albedo. If the ratio of the observed
radiance at lO.5pm to that at a longer wavelength in the same window
region is taken, this ratio will enhance the presence of an excessive
amount at lO,5pm of surface and scattered radiation when the cloud is
not “black. ” However, when the cloud is “black ,” i.e., no contribution
from surface and sca ttered rad ia tion, the ratio would be equiva l ent to
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that of blackbody radiances. Table 7 gives the ratios of blackbody radi-
ances as a function of temperature. The ll,Opm wavelength was not used,
not only because it lies too close to the lO,5pm wavelength , but also
because the advantage of its lower single scattering albedo is somewhat
offset by the disadvantage of its lower extinction coefficient , On the
basis of these disc ussions , the two criteria for choosing the shorter
wavelength are: (1) relatively higher single scattering albedo and (2)
relatively lower extinction coefficient. The 11.Opm wavelength satisfies
(2) but not quite (1), as indicated in Table 2,

TABLE 7. RATIOS OF BLACKBODY RADIANCES AT TWO WAVELENGTHS AS A
FUNCTION OF AIR TEMPERATURE (°C)

Temperature Wavel ength Ratio
(°C) 10.5/11.5 10.5/12.0 lO.5/l2.5

—25.0 0.8108 0.7455 0.6934
—20.0 0.8184 0.7555 0.7053
—15.0 0.8257 0.7652 0.7168
-10.0 0.8327 0.7746 0.7281

—5.0 0.8396 0.7838 0.7391
0,0 0.8462 0.7927 0.7499
5.0 0.8527 0.8014 0.7604

10.0 0.8589 0.8098 0.7706
15.0 0.8650 0.8180 0.7806
20.0 0.8709 0.8260 0.7903
25.0 0.8766 0.8337 0.7998
30.0 0.8821 0.8413 0.8090
35.0 0.8875 0.8487 0.8181

When the cloud in question is “black” in the window region, the ratio of
the observed radiances will give the cloud temperature, Moreover, only
under this condition will the radiance values at the two wavelengths, upon
conversion , a lso yield nearly the same temperature, The ratio of black—
body radiances in Table 7 changes rather slowly with temperature within
narrow l imits , and it does not take many extra surface and scattering con-
tributions to cause the ratio to deviate appreciably from its critical
blackbody value, The critical ratio is unknown ; but since the primary
interest l i s  in establishina a rel iability criterion for accepting or
rejecting the temperature derived from satellite data , the problem i s
to find a means to distinguish between black and nonblack clouds. For
this purpose , a reference ratio instead of the critical ratio is sought.

Besides the present c loud model , ~ number of homogeneous models suc h as
those used by Yamamoto et al. [5] and Hunt [8] were also investigated .
They were 1 km thick. After repeated numerical experiments, it was found

16
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that the ratio of the blackbody radiances derived from the surface temper-
ature served quite well as a reference ratio, When the ratio of the
observed (or more appropri ately, synthetic) radiances at a certain cloud
level became smaller than the reference ratio , the calculated vertical
emissivity at that level in every case showed better than 0,95 in the
window region , The surface temperature need not be accurate. Since most
clouds , except those l ow-hanging stratus and fogs, are generally 1 km or
more above the ground , a temperature 10 degrees less than the estimated
surface temperature could be used Over the continent , even lower temper-
atures could be used. This approdch was tested for 10 degrees less; and
an improvement of about l%-2% was obtained ,

To illustrate the technique just described for determining the degree of
cloud blackness or cloud emissivity , Tables 8 and 9 may serve as examples.
Table 8 shows the inhomogeneous model , and Table 9 one of Yamamoto t s [5]
homogeneous clouds, This particular cloud given here had a surface temper-
ature of 30°C and a cloud temperature of —30°C.

In the case of Platt ’s [15] cloud in Table 8, the cloud never becomes
“black” since the observed ratios at any levels never become smaller than
their respective reference ratios , although at 550 m the former nearly
approach the latter . In Table 9 the ratios are tabulated up to 550 m as
well as at 1 km , the top of the model cloud. The reference ratios at
30°C can also be directl y obtained from Table 7, The “observed” ratios
at the cloud top, when compared wi th the corresponding values in Table 7,
indicate that the equivalent cloud temperature is bel ow —25°C , which is
compatible with the given cloud temperature of the model. These ratios
are appreciably smaller than the reference ratios. The small arrows in
Table 9 show where the “observed ” ratios become smaller. It is evident
that they occur at different levels , 450 m , 500 m, and 550 m. Past studies
[6] show that cloud emissivity (or blackness) is frequency-dependent.
Hence , a nonblac k cloud at lO.5pm may appear “b lac k” when viewed at l2.Opm
or l2.5pm , which means that if cloud emissivity is required to be the same
in this window region then the required cloud thickness will decrease as
wavelength increases. To further illuminate this point , the calcula ted
vertical emissivities at these three levels are listed as a function of
wavelength:

Level Wavelength (pm )
(m) 10.5 ll~O 11,5 12.0 12,5

450 0,90 0.93 0,96 0,97 0,97

500 0.92 0.95 0.97 0,98 0.98

550 0.94 0.96 0,98 0.99 0.99
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TABLE 8. RATIOS OF THE “OBSERVED” RADIANCES AT DIFFERENT LEVELS
OF THE INHOMOGENEOUS CLOUD MODEL (SURFACE TEMPERATURE =

21.70°C)

Level Wavelength Ratio
Cm) ~l0.5/ll.5 10.5/12.0 10.5/12.5

550 0.8771 0.8331 0.7999
500 0.8774 0.8341 0.8001
450 0.8778 0.8338 0.7999
400 0.8781 0.8346 0.8000
350 0.8787 0.8351 0.8006
300 0.8792 0.8360 0.8007
250 0.8801 0.8369 0.8018
200 0.8812 0.8388 0.8037
150 0.8828 0.8408 0.8408
100 0.8854 0.8444 0.8107
50 0.8848 0.8440 0.8110

Surface 0.8728 0.8285 0.7935

Note: The last row contains the reference ratios.

TABLE 9. RATIOS OF THE “OBSERVED” RADIANCES AT DIFFERENT LEVELS
OF THE HOMOGENEOUS CLOUD MODEL (SURFACE TEMPERATURE =

30°C AND CLOUD TEMPERATURE = —30°C)

Level Wavelen gth Ratio
(m) 10.5/11.5 10.5/12.0 10.5/12,5

1000 0.8101 0.7425 0.6878
550 -p0.8726 0.81 34 0.7585
500 0.8895 ÷O.8344 0.7802
450 0.9088 0.8593 -“0.8066
400 0.9297 0.8877 0.8376
350 0.9511 0.9181 0.8719
300 0.9706 0.9481 0.9072
250 0.9835 0.9729 0.9385
200 0.9913 0.9865 0.9586
150 0.9852 0.9825 0.9596
100 0.9648 0.9565 0.9345
50 0.9299 0.9083 0.8820

Surface 0.8821 0.8413 0.8090

Note: Small arrow points to where the observed ratio
becomes less than the reference ratio.
The last row contains the reference ratios.
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If straight averages are taken on the emissivity values, for the 450 m,
500 m, and 550 m level s, the emissi vity values are 0.95, 0.96, and 0.97,
respectively. At 550 m Yamamoto ’s cloud appeared “blacker ” than Platt ’s.
Al though the former had a size range from O.Olpm to lO.Opm and the latter
a size range from O.5iim to 25.Opm , Yamamoto used an averaged value of
100 cm 3 per level in number concentration -or 0.063 g m 3 in liquid water
content , whereas Platt had a value of only 40 cm—3 or a liqu id content of
0.035 g r n 3.

SUMMARY AND CONCLUSIONS

In this study, a detailed investigation was performed in the l0.Spm to
l2.5pm window region of the internal structure of the vertical upward
radiation emerging from the different l evel s inside a realistic inhomoge—
neous cloud in the hope to derive additional physical insight for an under-
standing of cloud radiation. The contributions to the internal radiation
field consists of two components: one includes the thermal emission of
cloud particles and water vapor and the resulting Mie scattering by these
particles , and the other includes the thermal emission from the ground or
sea surface and the resulting scattering. As the former increases with
cloud depth, the latter decreases. When both are present, the cloud is
not “black” and its radiation field is said to be distorted by the pene-
tration of surface radiation and scattering. Such penetration is greater
at 1O,5pm than at longer wavelengths . When the penetration ceases, the
cloud emission and scattering completely dominate the radiation field and
the cl oud then behaves like a blackbody radiator. The fractional amounts
of thermal emission and scattering contributing to the blackbody radiation
at the cloud top are determined by the average single scattering albedo
of the cloud.

The average meteorological and microphysical properties were utilized to
examine clouds of various homogeneous states at two wavelengths for their
internal radiation fields. The microphysical property of clouds was shown
to be of prime importance in cloud modeling , whereas the temperature dis-
tribution wi thin the cloud had little effect on either the upwelling radi-
ation from the cloud top or the internal radiation distribution .

From such detailed investigation , a technique was evolved which takes
advantage of the distorted radiation field in a cloud. A 1O.5prn channel
is proposed in addition to the existing window channel in the 12pm window
region in sa tellite sounders. The ratio of the observed upward radiances
at these two wavelengths , when compared wi th that of the blackbody radiarices
derived for the corresponding wavelengths from a knowl edge of the surface
temperature , which could be an estimate , offers a good indication of the
degree of the cloud blackness or of cloud emissivity. Consequently, it
appears possible to determine the reliability of the temperature field
derived from satellite data. It was shown that the technique for distin-
guishing the cloud blackness does not require an accurate surface tempera-
ture. Two examples were presented in which one cloud was not so “black”
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and the other was, The clouds which have satisfied the ratio test at
different level s normally have emissivity values about 0.95 or more. On
the other hand , when the observed upward radiances, upon convers ion to
temperature , gtve nearly the same value , cloud emissivity may be taken
to be unity and that temperature then the cloud-top temperature,

Finally , this proposed technique is simple and inexpensive to execute on
board a satellite, Moreover , the ratio test minimizes the systematic
errors , which are found in all measuring devices and which are difficult
to account for,
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